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Two-State Paramagnetism Induced by Tsallis and
Renyi Statistics

C. Wolf1
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We calculate the induced magnetization of a two-state system within the context
of Tsallis statistics and Renyi statistics. Our calculation demonstrates that the
magnetization is increased by Tsallis statistics and decreased by Renyi statistics
relative to the Boltzmann Gibbs value.

1. INTRODUCTION

In the past decade a new approach to statistical mechanics has developed
motivated by the study of multifractals (Tsallis, 1988) along with studies in

coarse graining to represent a local entropy (Renyi, 1970). The above

ª q statisticsº applies to systems with long-range interactions and a non-

Markovian memory (Tirnakli et al., 1997a) and naturally includes systems

admitting gravitational forces (Pavon, 1987), magnetic systems (Hiley and

Joyce, 1965), and processes involving anomalous diffusion (Montroll and
Schlesinger, 1983). In particular, ª Tsallis statisticsº when applied to the solar

plasma predicts the correct rate of solar neutrino production in accord with

solar neutrino data (Clayton, 1974; Bahcall and Pinsonneault, 1992; Kania-

dakis et al., 1996). Other applications of Tsallis statistics include studies in

the ª generalized H theoremº (Ramshaw, 1993a,b; Mariz, 1992; Plastino and

Plastino, 1993), the fluctuation-dissipation theorem (Chame and de Mello,
1994), the Langevin and Fokker±Planck equations (Stariolo, 1994), the equip-

atation theorem (Plastino et al., 1994), the Ising chain (Andrade, 1991, 1994),

and the problem of blackbody radiation (Tsallis et al., 1995; Tirnakli et al.,
1997b). Few applications of Renyi’ s statistics are found in the literature
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primarily because of its rather pure mathematical foundations. In the present

paper we compare the Tsallis statistics with the Renyi statistics when applied

to a simple paramagnetic two-state system. We find that Tsallis statistics
generates a positive correction to the Boltzmann Gibbs value of the magnetiza-

tion, while the Renyi statistics generates a negative correction. Both of these

schemes reduce to the Maxwell±Boltzmann value for the magnetization when

the q parameter approaches 1.

2. PARAMAGNETISM WITHIN TSALLIS AND RENYI
STATISTICS

We begin by writing the expression for the entropy within the context
of Tsallis statistics (for a single particle)

S1 5
k

q 2 1 1 1 2 o P q
i 2

Pi 5 Ni /N, k is the Boltzmann constant, and q is the q parameter. For N
particles we have

S 5
kN

q 2 1 1 1 2 o P q
i 2 (2.1)

(q Þ 1).

If S is varied with respect to Ni with the constraints

o Ni 5 N, o Ni e i 5 N

we obtain (Tirnakli et al., 1997a)

Pi 5
Ni

N
5

(1 2 b (q 2 1) e i)
1/(q 2 1)

Z
(2.2)

( b 5 1/kT, with k the Boltzmann constant), where Z 5 ( i [1 2 b (q 2
1) e i]

1/(q 2 1).

We now consider the two-state spin system in a z-component mag-
netic field,

e 1 5 2 m B, e 2 5 m B

m is the magnetic moment; 1 represents m in the direction of the field, 2
represents m against the field. Equation (2.2) can be written as

Pi 5
exp{[1/(q 2 1)] lne[1 2 b (q 2 1) e i]}

Z

>
exp[ 2 b e i 2 b 2(q 2 1) e 2

i /2 2 b 3(q 2 1)2 e 3
i /3]

Z
(2.3)
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Using e + 5 2 m B and e 2 5 m B, evaluating Z, and using P+ 5 N+ /N and

P 2 5 N 2 /N, we obtain for the magnetization of N spins, M 5 N+ m 2 N 2 m , or

M 5 N m H exp F b m B 2
b 2(q 2 q)( m B)2

2
1

b 3(q 2 1)2( m B)3

3 G
2 exp F 2 b m B 2

b 2(q 2 1)( m B)2

2
2

b 3( m B)3(q 2 1)2

3 G J
3 H exp F b m B 2

b 2(q 2 1)( m B)2

2
1

b 3(q 2 1)2( m B)3

3 G
1 exp F 2 b m B 2

b 2(q 2 1)( m B)2

2
2

b 3( m B)3(q 2 1)2

3 G J
2 1

(2.4)

When we evaluate equation (2.4) to order (q 2 1)2 we obtain

M 5 N m tanh( b m B) 1 1 1
(q 2 1)2 b 3( m B)3

3 sinh( b m B) cosh( b m B) 2 (2.5)

From equation (2.5) we see that the first correction term increases in propor-

tion to (q 2 1)2 and ( m B/kT )3. For the Renyi statistics (Renyi, 1970) we have

S1 5 [k/(1 2 q)] ln( ( P q
i ); if we write S for N particles we have

S 5
kN

1 2 q
lne o 1 Ni

N 2
q

(2.6)

We now have upon maximizing S with the constraints ( Ni 5 const,
( Ni e i 5 const

q

1 2 q 1 (Ni /N)q 2 1

o (Ni /N)1 2 5
e i 2 m

t
(2.7)

m is the chemical potential, t 5 kT.

Here m / t is the Lagrange multiplier for d ( Ni 5 0, and 2 1±t is the

Lagrange multiplier for d ( e i Ni 5 0.

For a two-level system with e 1, e 2 ( e 1 . e 2) we have from equation (2.7)

N1

N2

5 1 e 1 2 m

e 2 2 m 2
1/(q 2 1)

(2.8)
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Letting N1 5 N 2 N2, we find

N2 5
N

1 1 (( e 1 2 m )/( e 2 2 m ))1/(q 2 1) ,

N1 5 N
(( e 1 2 m )/( e 2 2 m ))1/(q 2 1)

1 1 (( e 1 2 m )/( e 2 2 m ))1/(q 2 1) (2.9)

Substituting N1, N2 back into equation (2.7) for i 5 1, we find

q

1 2 q 1 1 1 X 1/(q 2 1)

1 1 X q/(q 2 1) 2 X 5
e 1 2 m

t
(2.10)

[X 5 ( e 1 2 m )/( e 2 2 m )] for t 5 kT . m B, X . 1, and we find m 5 t (q/

(q 2 1)) 1 e 1 ( e 1 5 m B, e 2 5 2 m B).
Substituting this value of m into equation (2.9) we obtain

N1 5
N/(1 1 ( e 1 2 e 2)(q 2 1)/ t q)1/(q 2 1)

1 1 1/(1 1 ( e 1 2 e 2)(q 2 1)/ t q)1/(q 2 1)

N2 5
N

1 1 1/(1 1 ( e 2 e 2)(q 2 1)/ t q)1/(q 2 1) (2.11)

If we approximate

1 1 1
( e 1 2 e 2)(q 2 1)

t q 2
1/(q 2 1)

5 exp F 1

q 2 1
lne 1 1 1

( e 1 2 e 2)(q 2 1)

t q 2 G
. exp F ( e 1 2 e 2)

t q
2

1

2

( e 1 2 e 2)
2(q 2 1)

t 2q2 G (2.12)

we have

N1 5
N exp[ 2 ( e 1 2 e 1)/ t q 1 1±2 ( e 1 2 e 2)

2(q 2 1)/ t 2q2]

1 1 exp[ 2 ( e 1 2 e 2)/ t q 1 1±2 ( e 1 2 e 2)
2(q 2 1)/ t q]

(2.13)

N2 5
N

1 1 e

2 ( e 1 2 e 2)

t q
1

1

2

( e 1 2 e 2)
2

t 2q2 (q 2 1)

For the magnetization of N spins ( e 1 5 m B, e 2 5 2 m B) we have

M 5 N2 m 2 N1 m (2.14)
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or upon using equations (2.11) ±(2.14)

M 5 N m tanh 1 m B

t q 2 F 1 2 e 2 m B/ t q 4 m 2B2(q 2 1)

t 2q2

3 1 1

sinh( m B/ t q)
1

1

cosh( m B/ t q) 2 G (2.15)

We see that equation (2.15) gives the first correction, which varies as (q 2
1) and B2 [since sinh( m B/ t q) . m B/ t q].

Thus the Renyi statistics decreases the effective magnetization. When

q 5 1, both equations (2.5) (Tsallis statistics) and (2.15) (Renyi statistics)
give the Boltzmann Gibbs value of M, M 5 N m tanh( m B/kT ) (Lee et al., 1963).

3. CONCLUSION

The above calculations demonstrate that the first correction to M for

Tsallis statistics varies as B3 and (q 2 1)2 (increases M ), and for Renyi

statistics the correction varies as B2 and (q 2 1) (decreases M ). The sign

and the variation of the correction provide us with a window to search for
nonextensive statistics in magnetic systems. In this regard Torres et al. (1997)

have set a limit for q of ) q 2 1 ) # 2 3 10 2 5 based on the primordial helium

abundance in the early universe, and multifractal models are capable of

calculating q from the fundamental fractal geometry (Gouyet, 1996). Perhaps

a combination of these ideas can be used to search for the presence of

nonextensive statistics in magnetic systems. Probably even a better place to
search for these effects is in ferromagnetic systems where a fractal geometry

is intrinsic to the domainlike structure. Lastly, it is interesting that both (2.5)

and (2.15) reduce to the Boltzmann Gibbs values for M when q ® 1 and

the reason that the Renyi correction to the magnetization is not symmetric

upon exchanging B ® 2 B is because of the presence of sinh( m B/ t q) in the
denominator of the correction term, which is singular at B 5 0. Thus m B/

t q Þ 0 is assumed in the derivation of the correction term.
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